

Snimpy: interactive SNMP tool

Snimpy is a Python-based tool providing a simple interface to build
SNMP query. Here is a very simplistic example that allows us to
display the routing table of a given host:

load("IP-FORWARD-MIB")
m=M("localhost", "public", 2)
routes = m.ipCidrRouteNextHop
for x in routes:
 net, netmask, tos, src = x
 print("%15s/%-15s via %-15s src %-15s" % (net, netmask, routes[x], src))

You can either use Snimpy interactively throught its console
(derived from Python own console or from IPython [http://ipython.org] if available) or
write Snimpy scripts which are just Python scripts with some global
variables available.

Why another tool?

There are a lot of SNMP tools available but most of them have
important drawback when you need to reliably automatize operations.

snmpget, snmpset and snmpwalk are difficult to use in
scripts. Errors are printed on standard output and there is no easy
way to tell if the command was successful or not. Moreover, results
can be multiline (a long HexString for example). At least,
automatisation is done through the shell and OID or bit manipulation
are quite difficult.

Net-SNMP provides officiel bindings for Perl and
Python. Unfortunately, the integration is quite poor. You don’t have
an easy way to load and browse MIBs and error handling is
inexistant. For example, the Python bindings will return None for a
non-existant OID. Having to check for this on each request is quite
cumbersome.

For Python, there are other bindings. For example, pysnmp [http://pysnmp.sourceforge.net/] provides a
pure Python implementation. However, MIBs need to be
compiled. Moreover, the exposed interface is still low-level. Sending
a simple SNMP GET can either take 10 lines or one line wrapped into 10
lines.

The two main points of Snimpy are:

	very high-level interface relying on MIBs

	raise exceptions when something goes wrong

Meantime, another Pythonic SNMP library based on Net-SNMP has been
released: Easy SNMP [https://github.com/fgimian/easysnmp]. Its interface is a less Pythonic than Snimpy
but it doesn’t need MIBs to work.

Contents

	Installation

	Usage

	API reference

	Contributing

	License

	History

Installation

At the command line:

$ easy_install snimpy

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv snimpy
$ pip install snimpy

Snimpy requires libsmi [http://www.ibr.cs.tu-bs.de/projects/libsmi/], a library to access SMI MIB
information. You need to install both the library and the development
headers. If Snimpy complains to not find smi.h, you can help by
specifying where this file is located by exporting the appropriate
environment variable:

$ export C_INCLUDE_PATH=/opt/local/include

On Debian/Ubuntu, you can install libsmi with:

$ sudo apt-get install libffi-dev libsmi2-dev snmp-mibs-downloader

On RedHat and similar, you can use:

$ sudo yum install libffi-devel libsmi-devel

On OS X, if you are using homebrew [http://brew.sh], you can use:

$ brew install libffi
$ brew install libsmi

On Debian and Ubuntu, Snimpy is also available as a package you can
install with:

$ sudo apt-get install snimpy

Usage

Invocation

There are three ways to use Snimpy:

	Interactively through a console.

	As a script interpreter.

	As a regular Python module.

Interactive use

Snimpy can be invoked with either snimpy or python -m
snimpy. Without any other arhument, the interactive console is
spawned. Otherwise, the given script is executed and the remaining
arguments are served as arguments for the script.

When running interactively, you get a classic Python
environment. There are two additional objects available:

	The load() method that takes a MIB name or a path to a
filename. The MIB will be loaded into memory and made available in
all SNMP managers:

load("SNMPv2-MIB")
load("/usr/share/mibs/ietf/IF-MIB")

	The M class which is used to instantiate a manager (a SNMP
client):

m = M()
m = M(host="localhost", community="private", version=2)
m = M("localhost", "private", 2)
m = M(community="private")
m = M(version=3,
 secname="readonly",
 authprotocol="MD5", authpassword="authpass",
 privprotocol="AES", privpassword="privpass")

A manager instance contains all the scalars and the columns in MIB
loaded with the load() method. There is no table, node or other
entities. For a scalar, getting and setting a value is a simple as:

print(m.sysDescr)
m.sysName = "newhostname"

For a column, you get a dictionary-like interface:

for index in m.ifTable:
 print(repr(m.ifDescr[index]))
m.ifAdminStatus[3] = "down"

If you care about efficiency, note that the above snippet will walk
the table twice: once to retrieve the index to loop over and once to
retrieve the values. This could be avoided with:

for index, value in m.ifDescr.iteritems():
 print(repr(value))

Furthermore, you can pass partial index values to iteritems() to
limit walked table rows to a specific subset:

for index, value in m.ipNetToMediaPhysAddress.iteritems(10):
 print(repr(value))

If you don’t need values you can use subscript syntax for this as well:

for index in m.ipNetToMediaPhysAddress[10]:
 print(repr(index))

Another way to avoid those extra SNMP requests is to enable the
caching mechanism which is disabled by default:

import time
m = M("localhost", cache=True)
print(m.sysUpTime)
time.sleep(1)
print(m.sysUpTime)
time.sleep(1)
print(m.sysUpTime)
time.sleep(10)
print(m.sysUpTime)

You can also specify the number of seconds data should be cached:

m = M("localhost", cache=20)

Also note that iterating over a table require an accessible index. Old
MIB usually have accessible indexes. If this is not the case, you’ll
have to iterate on a column instead. For example, the first example
could be written as:

for index in m.ifDescr:
 print(repr(m.ifDescr[index]))

If you want to group several write into a single request, you can do
it with with keyword:

with M("localhost", "private") as m:
 m.sysName = "toto"
 m.ifAdminStatus[20] = "down"

It’s also possible to set a custom timeout and a custom value for the
number of retries. For example, to wait 2.5 seconds before timeout
occurs and retry 10 times, you can use:

m = M("localhost", timeout=2.5, retries=10)

Snimpy will stop on any error with an exception. This allows you to
not check the result at each step. Your script can’t go awry. If this
behaviour does not suit you, it is possible to suppress exceptions
when querying inexistant objects. Instead of an exception, you’ll get
None:

m = M("localhost", none=True)

If for some reason, you need to specify the module you want to use to
lookup a node, you can do that using the following syntax:

print(m['SNMPv2-MIB'].sysDescr)
print(m['IF-MIB'].ifNumber)

Script interpreter

Snimpy can be run as a script interpreter. There are two ways to do
this. The first one is to invoke Snimpy and provide a script name as
well as any argument you want to pass to the script:

$ snimpy example-script.py arg1 arg2
$ python -m snimpy example-script.py arg1 arg2

The second one is to use Snimpy as a shebang [http://en.wikipedia.org/wiki/Shebang_(Unix)] interpreter. For
example, here is a simple script:

#!/usr/bin/env snimpy

load("IF-MIB")
m = M("localhost")
print(m.ifDescr[0])

The script can be invoked as any shell script.

Inside the script, you can use any valid Python code. You also get the
load() method and the M class available, like for the interactive
use.

Regular Python module

Snimpy can also be imported as a regular Python module:

from snimpy.manager import Manager as M
from snimpy.manager import load

load("IF-MIB")
m = M("localhost")
print(m.ifDescr[0])

About “major SMI errors”

If you get an exception like RAPID-CITY contains major SMI errors
(check with smilint -s -l1), this means that there are some grave
errors in this MIB which may lead to segfaults if the MIB is used as
is. Usually, this means that some identifier are unknown. Use smilint
-s -l1 YOUR-MIB to see what the problem is and try to solve all
problems reported by lines beginning by [1].

For example:

$ smilint -s -l1 rapid_city.mib
rapid_city.mib:30: [1] failed to locate MIB module `IGMP-MIB'
rapid_city.mib:32: [1] failed to locate MIB module `DVMRP-MIB'
rapid_city.mib:34: [1] failed to locate MIB module `IGMP-MIB'
rapid_city.mib:27842: [1] unknown object identifier label `igmpInterfaceIfIndex'
rapid_city.mib:27843: [1] unknown object identifier label `igmpInterfaceQuerier'
rapid_city.mib:27876: [1] unknown object identifier label `dvmrpInterfaceIfIndex'
rapid_city.mib:27877: [1] unknown object identifier label `dvmrpInterfaceOperState'
rapid_city.mib:27894: [1] unknown object identifier label `dvmrpNeighborIfIndex'
rapid_city.mib:27895: [1] unknown object identifier label `dvmrpNeighborAddress'
rapid_city.mib:32858: [1] unknown object identifier label `igmpCacheAddress'
rapid_city.mib:32858: [1] unknown object identifier label `igmpCacheIfIndex'

To solve the problem here, load IGMP-MIB and DVMRP-MIB before
loading rapid_city.mib. IGMP-MIB should be pretty easy to
find. For DVMRP-MIB, try Google.

Download it and use smistrip to get the MIB. You can check that the
problem is solved with this command:

$ smilint -p ../cisco/IGMP-MIB.my -p ./DVMRP-MIB -s -l1 rapid_city.mib

You will get a lot of errors in IGMP-MIB and DVMRP-MIB but no line
with [1]: everything should be fine. To load rapid_city.mib, you
need to do this:

load("../cisco/IGMP-MIB.my")
load("./DVMRP-MIB")
load("rapid_city.mib")

API reference

While Snimpy is targeted at being used interactively or through
simple scripts, you can also use it from your Python program.

It provides a high-level interface as well as lower-level
ones. However, the effort is only put in th manager module and
other modules are considered as internal details.

manager module

Internal modules

Those modules shouldn’t be used directly.

mib module

snmp module

This module is a low-level interface to build SNMP requests, send
them and receive answers. It is built on top of pysnmp [http://pysnmp.sourceforge.net/] but the
exposed interface is far simpler. It is also far less complete and
there is an important dependency to the basictypes module for
type coercing.

	
exception snimpy.snmp.SNMPAuthorization

	

	
exception snimpy.snmp.SNMPBadValue

	

	
exception snimpy.snmp.SNMPCommitFailed

	

	
exception snimpy.snmp.SNMPEndOfMibView

	

	
exception snimpy.snmp.SNMPException

	SNMP related base exception. All SNMP exceptions are inherited from
this one. The inherited exceptions are named after the name of the
corresponding SNMP error.

	
exception snimpy.snmp.SNMPGen

	

	
exception snimpy.snmp.SNMPInconsistentName

	

	
exception snimpy.snmp.SNMPInconsistentValue

	

	
exception snimpy.snmp.SNMPNoAccess

	

	
exception snimpy.snmp.SNMPNoCreation

	

	
exception snimpy.snmp.SNMPNoSuchInstance

	

	
exception snimpy.snmp.SNMPNoSuchName

	

	
exception snimpy.snmp.SNMPNoSuchObject

	

	
exception snimpy.snmp.SNMPNotWritable

	

	
exception snimpy.snmp.SNMPReadOnly

	

	
exception snimpy.snmp.SNMPResourceUnavailable

	

	
exception snimpy.snmp.SNMPTooBig

	

	
exception snimpy.snmp.SNMPUndoFailed

	

	
exception snimpy.snmp.SNMPWrongEncoding

	

	
exception snimpy.snmp.SNMPWrongLength

	

	
exception snimpy.snmp.SNMPWrongType

	

	
exception snimpy.snmp.SNMPWrongValue

	

	
class snimpy.snmp.Session(host, community='public', version=2, secname=None, authprotocol=None, authpassword=None, privprotocol=None, privpassword=None, contextname=None, bulk=40, none=False)

	SNMP session. An instance of this object will represent an SNMP
session. From such an instance, one can get information from the
associated agent.

	
bulk

	Get bulk settings.

	Returns

	False if bulk is disabled or a non-negative integer
for the number of repetitions.

	
get(*oids)

	Retrieve an OID value using GET.

	Parameters

	oids – a list of OID to retrieve. An OID is a tuple.

	Returns

	a list of tuples with the retrieved OID and the raw value.

	
retries

	Get number of times a request is retried.

	Returns

	Number of retries for each request.

	
set(*args)

	Set an OID value using SET. This function takes an odd number of
arguments. They are working by pair. The first member is an
OID and the second one is basictypes.Type instace
whose pack() method will be used to transform into the
appropriate form.

	Returns

	a list of tuples with the retrieved OID and the raw value.

	
timeout

	Get timeout value for the current session.

	Returns

	Timeout value in microseconds.

	
walk(*oids)

	Walk from given OIDs but don’t return any “extra” results. Only
results in the subtree will be returned.

	Parameters

	oid – OIDs used as a start point

	Returns

	a list of tuples with the retrieved OID and the raw value.

	
walkmore(*oids)

	Retrieve OIDs values using GETBULK or GETNEXT. The method is called
“walk” but this is either a GETBULK or a GETNEXT. The later is
only used for SNMPv1 or if bulk has been disabled using
bulk() property.

	Parameters

	oids – a list of OID to retrieve. An OID is a tuple.

	Returns

	a list of tuples with the retrieved OID and the raw value.

basictypes module

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/vincentbernat/snimpy/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Snimpy could always use more documentation, whether as part of the
official Snimpy docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/vincentbernat/snimpy/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up snimpy for local development.

	Fork the snimpy repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/snimpy.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv snimpy
$ cd snimpy/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

 $ flake8 snimpy tests
 $ python setup.py test
 $ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.4+. Check
https://travis-ci.org/vincentbernat/snimpy/pull_requests and make
sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m nose tests/test_snmp.py

License

Snimpy is licensed under the ISC license. It basically means: do
whatever you want with it as long as the copyright sticks around, the
conditions are not modified and the disclaimer is present.

Development Lead

	Vincent Bernat <bernat@luffy.cx>

Contributors

	Jakub Wroniecki

	Julian Taylor

ISC License

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

History

1.0.0 (2021-05-29)

	Drop compatibility with Python 2.

0.8.14 (2020-04-26)

	Add items() in addition to iteritems() This is an iterator
on Python 3 and return a list of items in Python 2.

0.8.13 (2018-10-12)

	Compatibility with Python 3.7.

	Fix an issue with implied index when reusing indexes between tables.

0.8.12 (2017-10-02)

	Support for more recent versions of IPython.

	Support for SNMPv3 context name.

	Support for notification nodes (MIB only).

0.8.11 (2016-08-13)

	Fix IPython interactive shell.

	Fix IPv6 handling for sessions.

	Ability for a session to return None instead of raising an exception.

0.8.10 (2016-02-16)

	Ability to walk a table (if the first index is accessible).

	Ability to do a partial walk (courtesy of Alex Unigovsky).

0.8.8 (2015-11-15)

	Fix thread-safety problem introduced in 0.8.6. This also undo any
improvement advertised in 0.8.6 when using multiple
threads. However, performance should be kept when using a single
thread.

0.8.7 (2015-11-14)

	Ability to specify a module name when querying a manager.

	Compatibility with PySNMP 4.3

	Array-like interface for OIDs.

	Ability to restrict lookups to a specific MIB: m[‘IF-MIB’].ifDescr.

	Fix multithread support with SNMPv3 (with a performance impact).

0.8.6 (2015-06-24)

	Major speed improvement.

	Major memory usage improvement.

0.8.5 (2015-04-04)

	Ability to set SMI search path (with mib.path())

	Fix documentation build on Read the Doc.

	Add a loose mode to manager to loosen type coercion.

0.8.4 (2015-02-10)

	More CFFI workarounds, including cross-compilation support.

	Ability to override a node type.

	Automatic workaround for “SNMP too big” error message.

0.8.3 (2014-08-18)

	IPv6 support.

0.8.2 (2014-06-08)

	Minor bugfixes.

0.8.1 (2013-10-25)

	Workaround a problem with CFFI extension installation.

0.8.0 (2013-10-19)

	Python 3.3 support. Pypy support.

	PEP8 compliant.

	Sphinx documentation.

	Octet strings with a display hint are now treated differently than
plain octet strings (unicode). Notably, they can now be set using
the displayed format (for example, for MAC addresses).

0.7.0 (2013-09-23)

	Major rewrite.

	SNMP support is now provided through PySNMP [http://pysnmp.sourceforge.net/].

	MIB parsing is still done with libsmi but through CFFI instead of a
C module.

	More unittests. Many bugfixes.

0.6.4 (2013-03-21)

	GETBULK support.

	MacAddress SMI type support.

0.6.3 (2012-04-13)

	Support for IPython 0.12.

	Minor bugfixes.

0.6.2 (2012-01-19)

	Ability to return None instead of getting an exception.

0.6.1 (2012-01-14)

	Thread safety and efficiency.

0.6 (2012-01-10)

	SNMPv3 support

0.5.1 (2011-08-07)

	Compatibility with IPython 0.11.

	Custom timeouts and retries.

0.5 (2010-02-03)

	Check conformity of loaded modules.

	Many bugfixes.

0.4 (2009-06-06)

	Allow to cache requests.

0.3 (2008-11-23)

	Provide a manual page.

	Use a context manager to group SET requests.

0.2.1 (2008-09-28)

	First release on PyPI.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 snimpy	

 	
 	
 snimpy.snmp	

Index

 B
 | G
 | R
 | S
 | T
 | W

B

 	
 	bulk (snimpy.snmp.Session attribute)

G

 	
 	get() (snimpy.snmp.Session method)

R

 	
 	retries (snimpy.snmp.Session attribute)

S

 	
 	Session (class in snimpy.snmp)

 	set() (snimpy.snmp.Session method)

 	snimpy.snmp (module)

 	SNMPAuthorization

 	SNMPBadValue

 	SNMPCommitFailed

 	SNMPEndOfMibView

 	SNMPException

 	SNMPGen

 	SNMPInconsistentName

 	SNMPInconsistentValue

 	SNMPNoAccess

 	
 	SNMPNoCreation

 	SNMPNoSuchInstance

 	SNMPNoSuchName

 	SNMPNoSuchObject

 	SNMPNotWritable

 	SNMPReadOnly

 	SNMPResourceUnavailable

 	SNMPTooBig

 	SNMPUndoFailed

 	SNMPWrongEncoding

 	SNMPWrongLength

 	SNMPWrongType

 	SNMPWrongValue

T

 	
 	timeout (snimpy.snmp.Session attribute)

W

 	
 	walk() (snimpy.snmp.Session method)

 	
 	walkmore() (snimpy.snmp.Session method)

 All modules for which code is available

	snimpy.snmp

 Source code for snimpy.snmp

#
snimpy -- Interactive SNMP tool
#
Copyright (C) Vincent Bernat <bernat@luffy.cx>
#
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#

"""
This module is a low-level interface to build SNMP requests, send
them and receive answers. It is built on top of pysnmp_ but the
exposed interface is far simpler. It is also far less complete and
there is an important dependency to the :mod:`basictypes` module for
type coercing.

.. _pysnmp: http://pysnmp.sourceforge.net/
"""

import re
import socket
import inspect
import threading
import ipaddress
from pysnmp.entity.rfc3413.oneliner import cmdgen
from pysnmp.proto import rfc1902, rfc1905
from pysnmp.smi import error

[docs]class SNMPException(Exception):
 """SNMP related base exception. All SNMP exceptions are inherited from
 this one. The inherited exceptions are named after the name of the
 corresponding SNMP error.
 """

[docs]class SNMPTooBig(SNMPException):
 pass

[docs]class SNMPNoSuchName(SNMPException):
 pass

[docs]class SNMPBadValue(SNMPException):
 pass

[docs]class SNMPReadOnly(SNMPException):
 pass

Dynamically build remaining (v2) exceptions
for name, obj in inspect.getmembers(error):
 if name.endswith("Error") and \
 inspect.isclass(obj) and \
 issubclass(obj, error.MibOperationError) and \
 obj != error.MibOperationError:
 name = str("SNMP{}".format(name[:-5]))
 globals()[name] = type(name, (SNMPException,), {})
del name
del obj

[docs]class Session:

 """SNMP session. An instance of this object will represent an SNMP
 session. From such an instance, one can get information from the
 associated agent."""

 _tls = threading.local()

 def __init__(self, host,
 community="public", version=2,
 secname=None,
 authprotocol=None,
 authpassword=None,
 privprotocol=None,
 privpassword=None,
 contextname=None,
 bulk=40,
 none=False):
 """Create a new SNMP session.

 :param host: The hostname or IP address of the agent to
 connect to. Optionally, the port can be specified
 separated with a double colon.
 :type host: str
 :param community: The community to transmit to the agent for
 authorization purpose. This parameter is ignored if the
 specified version is 3.
 :type community: str
 :param version: The SNMP version to use to talk with the
 agent. Possible values are `1`, `2` (community-based) or
 `3`.
 :type version: int
 :param secname: Security name to use for SNMPv3 only.
 :type secname: str
 :param authprotocol: Authorization protocol to use for
 SNMPv3. This can be `None` or either the string `SHA` or
 `MD5`.
 :type authprotocol: None or str
 :param authpassword: Authorization password if authorization
 protocol is not `None`.
 :type authpassword: str
 :param privprotocol: Privacy protocol to use for SNMPv3. This
 can be `None` or either the string `AES`, `AES128`,
 `AES192`, `AES256` or `3DES`.
 :type privprotocol: None or str
 :param privpassword: Privacy password if privacy protocol is
 not `None`.
 :type contextname: str
 :param contextname: Context name for SNMPv3 messages.
 :type privpassword: str
 :param bulk: Max repetition value for `GETBULK` requests. Set
 to `0` to disable.
 :type bulk: int
 :param none: When enabled, will return None for not found
 values (instead of raising an exception)
 :type none: bool
 """
 self._host = host
 self._version = version
 self._none = none
 if version == 3:
 self._cmdgen = cmdgen.CommandGenerator()
 self._contextname = contextname
 else:
 if not hasattr(self._tls, "cmdgen"):
 self._tls.cmdgen = cmdgen.CommandGenerator()
 self._cmdgen = self._tls.cmdgen
 self._contextname = None
 if version == 1 and none:
 raise ValueError("None-GET requests not compatible with SNMPv1")

 # Put authentication stuff in self._auth
 if version in [1, 2]:
 self._auth = cmdgen.CommunityData(
 community[0:30], community, version - 1)
 elif version == 3:
 if secname is None:
 secname = community
 try:
 authprotocol = {
 None: cmdgen.usmNoAuthProtocol,
 "MD5": cmdgen.usmHMACMD5AuthProtocol,
 "SHA": cmdgen.usmHMACSHAAuthProtocol,
 "SHA1": cmdgen.usmHMACSHAAuthProtocol
 }[authprotocol]
 except KeyError:
 raise ValueError("{} is not an acceptable authentication "
 "protocol".format(authprotocol))
 try:
 privprotocol = {
 None: cmdgen.usmNoPrivProtocol,
 "DES": cmdgen.usmDESPrivProtocol,
 "3DES": cmdgen.usm3DESEDEPrivProtocol,
 "AES": cmdgen.usmAesCfb128Protocol,
 "AES128": cmdgen.usmAesCfb128Protocol,
 "AES192": cmdgen.usmAesCfb192Protocol,
 "AES256": cmdgen.usmAesCfb256Protocol,
 }[privprotocol]
 except KeyError:
 raise ValueError("{} is not an acceptable privacy "
 "protocol".format(privprotocol))
 self._auth = cmdgen.UsmUserData(secname,
 authpassword,
 privpassword,
 authprotocol,
 privprotocol)
 else:
 raise ValueError("unsupported SNMP version {}".format(version))

 # Put transport stuff into self._transport
 mo = re.match(r'^(?:'
 r'\[(?P<ipv6>[\d:A-Fa-f]+)\]|'
 r'(?P<ipv4>[\d\.]+)|'
 r'(?P<any>.*?))'
 r'(?::(?P<port>\d+))?$',
 host)
 if mo.group("port"):
 port = int(mo.group("port"))
 else:
 port = 161
 if mo.group("ipv6"):
 self._transport = cmdgen.Udp6TransportTarget((mo.group("ipv6"),
 port))
 elif mo.group("ipv4"):
 self._transport = cmdgen.UdpTransportTarget((mo.group("ipv4"),
 port))
 else:
 results = socket.getaddrinfo(mo.group("any"),
 port,
 0,
 socket.SOCK_DGRAM,
 socket.IPPROTO_UDP)
 # We should try to connect to each result to determine if
 # the given family is available. However, we cannot do
 # that over UDP. Let's implement a safe choice. If we have
 # an IPv4 address, use that. If not, use IPv6. If we want
 # to add an option to force IPv6, it is a good place.
 if [x for x in results if x[0] == socket.AF_INET]:
 self._transport = cmdgen.UdpTransportTarget((mo.group("any"),
 port))
 else:
 self._transport = cmdgen.Udp6TransportTarget((mo.group("any"),
 port))

 # Bulk stuff
 self.bulk = bulk

 def _check_exception(self, value):
 """Check if the given ASN1 value is an exception"""
 if isinstance(value, rfc1905.NoSuchObject):
 raise SNMPNoSuchObject("No such object was found") # noqa: F821
 if isinstance(value, rfc1905.NoSuchInstance):
 raise SNMPNoSuchInstance("No such instance exists") # noqa: F821
 if isinstance(value, rfc1905.EndOfMibView):
 raise SNMPEndOfMibView("End of MIB was reached") # noqa: F821

 def _convert(self, value):
 """Convert a PySNMP value to some native Python type"""
 try:
 # With PySNMP 4.3+, an OID is a ObjectIdentity. We try to
 # extract it while being compatible with earlier releases.
 value = value.getOid()
 except AttributeError:
 pass
 convertors = {rfc1902.Integer: int,
 rfc1902.Integer32: int,
 rfc1902.OctetString: bytes,
 rfc1902.IpAddress: ipaddress.IPv4Address,
 rfc1902.Counter32: int,
 rfc1902.Counter64: int,
 rfc1902.Gauge32: int,
 rfc1902.Unsigned32: int,
 rfc1902.TimeTicks: int,
 rfc1902.Bits: str,
 rfc1902.Opaque: str,
 rfc1902.univ.ObjectIdentifier: tuple}
 if self._none:
 convertors[rfc1905.NoSuchObject] = lambda x: None
 convertors[rfc1905.NoSuchInstance] = lambda x: None
 for cl, fn in convertors.items():
 if isinstance(value, cl):
 return fn(value)
 self._check_exception(value)
 raise NotImplementedError("unable to convert {}".format(repr(value)))

 def _op(self, cmd, *oids):
 """Apply an SNMP operation"""
 kwargs = {}
 if self._contextname:
 kwargs['contextName'] = rfc1902.OctetString(self._contextname)
 errorIndication, errorStatus, errorIndex, varBinds = cmd(
 self._auth, self._transport, *oids, **kwargs)
 if errorIndication:
 self._check_exception(errorIndication)
 raise SNMPException(str(errorIndication))
 if errorStatus:
 # We try to find a builtin exception with the same message
 exc = str(errorStatus.prettyPrint())
 exc = re.sub(r'\W+', '', exc)
 exc = "SNMP{}".format(exc[0].upper() + exc[1:])
 if str(exc) in globals():
 raise globals()[exc]
 raise SNMPException(errorStatus.prettyPrint())
 if cmd in [self._cmdgen.getCmd, self._cmdgen.setCmd]:
 results = [(tuple(name), val) for name, val in varBinds]
 else:
 results = [(tuple(name), val)
 for row in varBinds for name, val in row]
 if len(results) > 0 and isinstance(results[-1][1],
 rfc1905.EndOfMibView):
 results = results[:-1]
 if len(results) == 0:
 if cmd not in [self._cmdgen.nextCmd, self._cmdgen.bulkCmd]:
 raise SNMPException("empty answer")
 return tuple([(oid, self._convert(val)) for oid, val in results])

[docs] def get(self, *oids):
 """Retrieve an OID value using GET.

 :param oids: a list of OID to retrieve. An OID is a tuple.
 :return: a list of tuples with the retrieved OID and the raw value.
 """
 return self._op(self._cmdgen.getCmd, *oids)

[docs] def walkmore(self, *oids):
 """Retrieve OIDs values using GETBULK or GETNEXT. The method is called
 "walk" but this is either a GETBULK or a GETNEXT. The later is
 only used for SNMPv1 or if bulk has been disabled using
 :meth:`bulk` property.

 :param oids: a list of OID to retrieve. An OID is a tuple.
 :return: a list of tuples with the retrieved OID and the raw value.

 """
 if self._version == 1 or not self.bulk:
 return self._op(self._cmdgen.nextCmd, *oids)
 args = [0, self.bulk] + list(oids)
 try:
 return self._op(self._cmdgen.bulkCmd, *args)
 except SNMPTooBig:
 # Let's try to ask for less values. We will never increase
 # bulk again. We cannot increase it just after the walk
 # because we may end up requesting everything twice (or
 # more).
 nbulk = self.bulk / 2 or False
 if nbulk != self.bulk:
 self.bulk = nbulk
 return self.walk(*oids)
 raise

[docs] def walk(self, *oids):
 """Walk from given OIDs but don't return any "extra" results. Only
 results in the subtree will be returned.

 :param oid: OIDs used as a start point
 :return: a list of tuples with the retrieved OID and the raw value.
 """
 return ((noid, result)
 for oid in oids
 for noid, result in self.walkmore(oid)
 if (len(noid) >= len(oid) and
 noid[:len(oid)] == oid[:len(oid)]))

[docs] def set(self, *args):

 """Set an OID value using SET. This function takes an odd number of
 arguments. They are working by pair. The first member is an
 OID and the second one is :class:`basictypes.Type` instace
 whose `pack()` method will be used to transform into the
 appropriate form.

 :return: a list of tuples with the retrieved OID and the raw value.
 """
 if len(args) % 2 != 0:
 raise ValueError("expect an even number of arguments for SET")
 varbinds = zip(*[args[0::2], [v.pack() for v in args[1::2]]])
 return self._op(self._cmdgen.setCmd, *varbinds)

 def __repr__(self):
 return "{}(host={},version={})".format(
 self.__class__.__name__,
 self._host,
 self._version)

 @property
 def timeout(self):
 """Get timeout value for the current session.

 :return: Timeout value in microseconds.
 """
 return self._transport.timeout * 1000000

 @timeout.setter
 def timeout(self, value):
 """Set timeout value for the current session.

 :param value: Timeout value in microseconds.
 """
 value = int(value)
 if value <= 0:
 raise ValueError("timeout is a positive integer")
 self._transport.timeout = value / 1000000.

 @property
 def retries(self):
 """Get number of times a request is retried.

 :return: Number of retries for each request.
 """
 return self._transport.retries

 @retries.setter
 def retries(self, value):
 """Set number of times a request is retried.

 :param value: Number of retries for each request.
 """
 value = int(value)
 if value < 0:
 raise ValueError("retries is a non-negative integer")
 self._transport.retries = value

 @property
 def bulk(self):
 """Get bulk settings.

 :return: `False` if bulk is disabled or a non-negative integer
 for the number of repetitions.
 """
 return self._bulk

 @bulk.setter
 def bulk(self, value):
 """Set bulk settings.

 :param value: `False` to disable bulk or a non-negative
 integer for the number of allowed repetitions.
 """
 if value is False:
 self._bulk = False
 return
 value = int(value)
 if value <= 0:
 raise ValueError("{} is not an appropriate value "
 "for max repeater parameter".format(
 value))
 self._bulk = value

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Snimpy: interactive SNMP tool

 		
 Installation

 		
 Usage

 		
 Invocation

 		
 Interactive use

 		
 Script interpreter

 		
 Regular Python module

 		
 About “major SMI errors”

 		
 API reference

 		
 manager module

 		
 Internal modules

 		
 mib module

 		
 snmp module

 		
 basictypes module

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 License

 		
 Development Lead

 		
 Contributors

 		
 ISC License

 		
 History

 		
 1.0.0 (2021-05-29)

 		
 0.8.14 (2020-04-26)

 		
 0.8.13 (2018-10-12)

 		
 0.8.12 (2017-10-02)

 		
 0.8.11 (2016-08-13)

 		
 0.8.10 (2016-02-16)

 		
 0.8.8 (2015-11-15)

 		
 0.8.7 (2015-11-14)

 		
 0.8.6 (2015-06-24)

 		
 0.8.5 (2015-04-04)

 		
 0.8.4 (2015-02-10)

 		
 0.8.3 (2014-08-18)

 		
 0.8.2 (2014-06-08)

 		
 0.8.1 (2013-10-25)

 		
 0.8.0 (2013-10-19)

 		
 0.7.0 (2013-09-23)

 		
 0.6.4 (2013-03-21)

 		
 0.6.3 (2012-04-13)

 		
 0.6.2 (2012-01-19)

 		
 0.6.1 (2012-01-14)

 		
 0.6 (2012-01-10)

 		
 0.5.1 (2011-08-07)

 		
 0.5 (2010-02-03)

 		
 0.4 (2009-06-06)

 		
 0.3 (2008-11-23)

 		
 0.2.1 (2008-09-28)

_static/up-pressed.png

_static/plus.png

_static/up.png

